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Abstract This paper reports the results of ionosphere and plasmasphere observations with the Kharkiv
incoherent scatter radar and ionosonde, Defense Meteorological Satellite Program, and Arase (ERG)
satellites and simulations with field line interhemispheric plasmamodel during the equinoxes and solstices of
solar minimum 24. The results reveal the need to increase NRLMSISE-00 thermospheric hydrogen density
by a factor of ~2. For the first time, it is shown that the measured plasmaspheric density can be reproduced
with doubled NRLMSISE-00 hydrogen density only. A factor of ~2 decrease of plasmaspheric density in
deep inner magnetosphere (L ≈ 2.1) caused by very weak magnetic disturbance (Dst > �22 nT) of
24 December 2017 was observed in the morning of 25 December 2017. During the next night, prominent
effects of partially depleted flux tube were observed in the topside ionosphere (~50% reduced H+ ion density)
and at the F2-layer peak (~50% decreased electron density). The likely physical mechanisms are discussed.

Plain Language Summary Our planet is surrounded by an extensive envelope of hydrogen gas
that stretches a quarter of the way to the moon. It is called the geocorona because it can be seen in
ultraviolet light analogous to the corona surrounding the sun during a total eclipse. This hydrogen gas is the
source of ionized hydrogen that forms the plasmasphere, which is important because it affects radio wave
propagation and therefore the accuracy of global positioning systems. The ultimate source of the hydrogen is
the dissociation of water vapor near 100-km altitude. Both the geocorona and plasmasphere have their
source from the atomic hydrogen near 500 km in the thermosphere. For almost half a century, scientists have
been using hydrogen density deduced from the observations of Atmospheric Explorer satellite missions.
Our study with Kharkiv incoherent scatter radar shows that the hydrogen density is actually ~100% higher
than the earlier measurements. This result is supported by independent observations with satellites. Our
finding means that many of calculations related to the important aspects of space weather influence need to
be revisited. And, in a broader sense, our result points the way to better understanding of long-standing
unresolved problems of solar-terrestrial interaction.

1. Introduction

It is well known that the ionosphere, plasmasphere, and thermosphere are a strongly coupled system
through the accidentally resonant charge exchange reactions H + O+ → H+ + O and H+ + O → H + O+.
Thus, atomic hydrogen (H) in the Earth’s upper thermosphere is primarily responsible for the formation the
plasmasphere. It directly impacts plasmasphere refilling after strong magnetic storms (Kersley et al., 1978;
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Krall et al., 2018; Richards & Torr, 1985). Hydrogen from the upper thermosphere is also the source of the geo-
corona, which significantly affects the ring current decay during the recovering phase of magnetic storms (Ilie
et al., 2013; Krall et al., 2018). Thus, accurate knowledge of the upper thermosphere H density is crucially
important for comprehensive investigations of a wide range of important space weather phenomena in
the near-Earth environment.

The NRLMSISE-00 atmospheric model (Picone et al., 2002) continues to be the main source of thermospheric
H density for ionosphere-plasmasphere calculations. It is primarily based on ion chemistry and the H+ and O+

ion density data collected by the Atmospheric Explorer satellites during 1974–1980. Over several decades,
some efforts have been undertaken to obtain new measurements of the H density, mainly by the emissions
measurements of Balmer-α (Anderson Jr. et al., 1987; Bishop et al., 2004) and Lyman-α (Bishop et al., 2001;
Nossal et al., 2012; Waldrop & Paxton, 2013). The results of these studies are contradictory. For example,
for the minimum of solar cycle 23, Waldrop and Paxton (2013) reported that NRLMSISE-00 overestimates
the H density by ~36–67% whereas the observations of Nossal et al. (2012) imply that the H density is a factor
of ~2 higher than that from the NRLMSISE-00 model. The integrated nature of the H emission measurements
and consequent lack of altitude information is a disadvantage of this method. Nevertheless, the Nossal et al.
(2012) results are supported by the IS radar measurements of Kotov et al. (2015, 2016). By combining obser-
vations of the H+ ion density and other key parameters of the ionosphere from the Kharkiv incoherent scatter
(IS) radar (49.6°N, 36.3°E) with the field line interhemispheric plasma (FLIP) model, it was found that the
NRLMSISE-00 model H density had to be increased by a factor of 2 to 3 to bring the ionosphere model H+

density into agreement with the data in all seasons during the 2006–2010. In contrast, recent simulations
with WACCM-X model (Liu et al., 2018) gave upper thermosphere H density close to NRLMSISE-00 values
under solar minimum conditions (Qian et al., 2018).

Long-term changes of the thermospheric and exospheric hydrogen density are of special interest for the
understanding of the evolution of the plasmasphere through the decades and as an indicator of changes
in greenhouse gas density (Nossal et al., 2016). The current solar minimum 24 (from about 2016) is especially
interesting because it follows a historically weak solar maximum.

In this paper, we present the thermospheric hydrogen density estimated from the Kharkiv IS radar observa-
tions and calculations by the FLIP model for dates close to the fall equinox of 2016, summer and winter sol-
stices of 2017, and vernal equinox of 2018. Satellite data from Defense Meteorological Satellite Program
(DMSP; Rich, 1994) and Arase (ERG) (Miyoshi et al., 2018) are used as independent support for our conclusions.

In the course of this study, a surprising effect was uncovered. Namely, there was a significant (factor of ~2)
plasmasphere density depletion observed by the Arase satellite at the relatively low Kharkiv L shell (≈2.1) fol-
lowing a weak magnetic storm of 24 December 2017 (maximum of Kp = 3+, minimum of Dst ≈ �22 nT).
Prominent effects likely related to this depletion were observed by other facilities in the topside ionosphere
and even at the F2-layer peak during the evening of 25 December and night of 26 December. Total electron
content (TEC) also show signatures of the effects. The observational results are compared with simulations by
the FLIP model, and possible explanations are provided in terms of ionosphere-plasmasphere coupling.

2. Research Tools
2.1. The Kharkiv IS Radar and Ionosonde

The Kharkiv IS radar is located in Ukraine (49.6°N, 36.3°E, 45.3° inv, solar apparent time LT ≈ UT + 2.4). It oper-
ates at 158 MHz and uses a large zenith-directed 100-m diameter fixed antenna that enables the observation
of the H+ ion fraction in addition to other standard IS plasma parameters. An ionosonde located at the same
observatory is used to calibrate the IS radar electron density data. The results presented in this paper were
obtained with 20-min temporal resolution and with ~100-km-altitude resolution. Detailed information on
the specialized topside mode of the Kharkiv IS radar, the data analysis techniques, and the error analysis were
described by Kotov et al. (2015). In this study, data on the plasma parameters were obtained in the altitude
range from ~200 to ~600 km encompassing the region of the F2 layer and the topside ionosphere.

2.2. DMSP Satellites

Additional topside ion data are provided by the DMSP-F15 satellite, which was in the nighttime magnetic
local time (MLT) sector (~3.2–3.8 MLT) during the period of our study. The satellite has a near-circular orbit
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(~845 km), which provides ion data approximately 250 km above the maximum altitude of the Kharkiv IS
radar. The DMSP total ion density is provided by the scintillation meter, which is the part of the Special
Sensor Ions, Electrons, Scintillation suite of instruments on DMSP-F15 (Rich, 1994). This study also uses vali-
dated ion composition (fractions of O+, He+, and H+ ions) from the retarding potential analyzer to confirm
the dominance of H+ ions at the altitudes of the DMSP-F15 orbit (~845 km) during the nighttime.

2.3. Arase Satellite

The Arase satellite was launched in December 2016 and started regular observations in its full operation
mode in March 2017 (Miyoshi et al., 2018). The Plasma Wave Experiment (PWE)/Onboard Frequency
Analyzer (OFA) and High Frequency Analyzer (HFA) instruments onboard the Arase satellite routinely
measure the frequency spectrum below 20 kHz and that from 10 kHz to 10 MHz, respectively (Kasahara et al.,
2018; Kumamoto et al., 2018). The ambient plasma density can be derived along the satellite orbit from the
frequency of the upper hybrid resonance emissions observed by OFA and HFA and the local cyclotron
frequency measured by the magnetometer (Matsuoka et al., 2018). The Arase electron density data used in
this study was obtained in the plasmasphere near 5,000-km altitude.

2.4. FLIP Model

The FLIP model is a one-dimensional physical model of ionosphere and plasmasphere (Richards, 2001;
Richards et al., 2010). An important advantage of the model is that the measured F2-layer peak height
hmF2 and topside electron temperature Te can be used as constraints for the model.

3. Estimation of the Neutral Hydrogen Density

The method to estimate thermospheric H density was explained by Kotov et al. (2015, 2016). The FLIP model
is constrained to follow the diurnal variations of hmF2 and topside Te as measured by the Kharkiv IS radar to
minimize the most significant errors inherent to physical simulation of midlatitude ionosphere due to large
uncertainties in the thermospheric wind velocity and the heat flux into the topside ionosphere from the plas-
masphere. Note that, at midlatitudes, electric fields cause vertical plasma motion similarly to horizontal
winds. Winds and electric fields are taken into account by the FLIP model procedure to reproduce the
observed hmF2.

The simulation begins 5 days prior to the period of IS observations to allow the plasmasphere densities to
settle down from the initial conditions. The measured variations of hmF2 and topside Te for the first day of
observational period are used for all 5 days prior to IS observations. The FLIP model uses the actual values
of daily F10.7 and 3-hr Ap indices to govern the NRLMSISE-00 model neutral densities for the simulation. As
a check on the reliability of the NRLMSISE-00 neutral temperature and O and N2 densities, the FLIP model
ion temperature Ti and NmF2 are compared to the observed values. This study and our previous studies
(Kotov et al., 2015, 2016) for the equinoxes of 2006–2010, winter season of 2007–2010, and summer of
2010 confirm the consistency of the NRLMSISE-00 model and the IS radar/FLIP model for all of the standard
IS plasma parameters.

In our previous studies, it was found that even when the FLIP model accurately matched the measured hmF2
and NmF2, the model H density had to be increased by factors of 2 to 3 in order for the FLIP model to match
the observed topside H+ density. It is important to note that the higher H density not only brought the FLIP
topside H+ ion density into very good agreement with the IS radar observations but also helped to resolve
other long-standing model-data discrepancies. For example, the higher H density brings the model into bet-
ter agreement with (1) IS observations of the heavy to light ion transition height, (2) IS and ionosonde mea-
surements of high values of NmF2 at night, and (3) the satellite measurements of high plasmasphere refilling
rates (Kotov et al., 2015, 2016, and references therein). These results provide a high level of confidence in the
validity of our estimation of thermospheric H density.

4. Results and Discussions

In this study we consider observational results obtained by the Kharkiv ISR and ionosonde, DMSP-F15, and
Arase satellites and observationally constrained simulations made with FLIP model for the following periods:
23–25 September 2016, 20–22 June 2017, 22–26 December 2017, and 29 March 2018. During these periods,
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solar and magnetic activities were generally low (daily F10.7 ~ 69–85 solar flux units, Ap less than 5 nT for the
period of observations and the previous day). The only exception was December 2017 when the daily Ap
value was 12 nT on 24 December.

4.1. Thermospheric Hydrogen Density

Figures 1 and 2 show the diurnal variations of the F2-layer peak height and density and the plasma para-
meters in the topside ionosphere measured by the Kharkiv IS radar for all four intervals. These figures also
show the variations produced by the FLIP model when it was constrained to follow the observed hmF2 and
topside Te.

The simulated NmF2 is generally in very good agreement with the observations (except for the night of 25 and
26 December when the observed NmF2 value was a factor of ~1.5 lower than the FLIP calculations). The mea-
sured Ti variations agree well with the FLIP ones within the ~10% error of the measurements. This good
agreement supports the NRLMSISE-00 neutral temperature and O and N2 for these periods.

A feature of all four periods under consideration is that the FLIP model nighttime H+ density simulated with H
density from NRLMSISE-00 model (dashed red lines) at 601 km is clearly significantly underestimated (by a
factor of ~1.5 to ~2.5) compared to the IS radar observations. To bring the model results into a good agree-
ment with the measured values, it is necessary to double the NRLMSISE-00 H density as seen by the solid
green lines in Figures 1 and 2.

It should be noted that doubling the H density does not significantly affect the FLIP NmF2 values for the
September, March, and June periods but does improve the model NmF2 during the night of 24 and 25
December very much (by ~50%). Similar results were obtained for the winter nights of the years of 2007–
2010 when the solar and magnetic activities were similar (Kotov et al., 2016). NmF2 enhancements at midla-
titudes on the long winter nights are a well-known phenomenon (e.g., Bertin & Papet-Lepine, 1970) and are
due to strong H+

flow from the plasmasphere to ionosphere. From our previous and current studies, such a
strong flux can only be obtained when the NRLMSISE-00 H density is increased, which further supports the
need of this increasing.

Further support comes from DMSP-F15 satellite observations at altitudes near 845 km where H+ ions are nor-
mally dominant at night (the satellite retarding potential analyzer data show that there were more than 90%
of light ions at the orbit at L ≈ 2.13). Figure 3 shows the DMSP and FLIP model total ion (electron) densities. It
should be noted that comparisons of models with satellite data are particularly uncertain near sunrise
because of timing issues. The rapid increase in plasma temperatures at sunrise causes a rapid increase in
O+ density along with a rapid decrease in H+ density. Small mismatches in time or space can lead to large
model-data differences under these conditions. This situation is likely for all the June nights and also for
the night of 25 and 26 December. However, the sunrise problem is not an issue for the September and
March data, and also for the night of 24 and 25 December. These periods clearly indicate that the DMSP total
ion density is closer to the FLIP H+ values when calculated with the doubled NRLMSISE-00 H density.

Additional support for increasing of the H density is provided by the electron density observations conducted
by the Arase satellite at plasmaspheric altitudes (~5,000 km) in close proximity to Kharkiv’s flux tube (see
Figure 4) in December 2017. There is very good model-data agreement on the morning of the quiet day of
23 December with the NRLMSISE-00 model H density doubled. The standard NRLMSISE-00 H density causes
the FLIP model plasmaspheric density to be ~50% less than the observed value.

Also, our results are supported by the need in increase of the electron density scale height above F2-layer
peak recently confirmed with direct radio occultation GPS measurements (Hernández-Pajares et al., 2017;
Olivares-Pulido et al., 2016).

4.2. Strong Response of Plasmasphere and Ionosphere on the Weak Magnetic Disturbance of 24
December 2017

The Arase satellite observations indicate that on the morning of 25 December 2017, the plasmaspheric elec-
tron density was a factor of ~2 lower than on the morning of 23 December even though both passes were
close in MLT, altitude, latitude, and longitude (Figure 4). Arase passed very close to the Kharkiv flux tube at
~5.13 UT of 25 December.
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Figure 1. Comparison of hmF2, NmF2, and topside Ti, Te, and O+ and H+ ion densities observed by the Kharkiv IS radar
(open circles) and simulated with field line interhemispheric plasma model (lines). Here and in all subsequent figures, the
field line interhemispheric plasma model followed the observed hmF2 and topside Te, the dashed red lines show the
results calculated using the standard NRLMSISE-00 H density, while the solid green lines are for the case of doubled
NRLMSISE-00 H density. The dash-dotted blue line shows Tn at 399 km from the NRLMSISE-00 model. Left panels are for the
period of 23–26 September 2016; right panels are for 29 March 2018.
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During the preceding night and evening of 24 December, the Kharkiv IS radar (Figure 2) and the DMSP-F15
satellite (Figure 3) observed high H+ ion densities in the topside, and the Kharkiv ionosonde showed the
development of a strong NmF2 enhancement in excellent agreement with FLIP calculations with the
NRLMSISE-00 H density doubled. All these ionosphere observations may be explained by the presence of

Figure 2. The lines and symbols are the same as in Figure 1, but the left panels are for the period of 20–22 June 2017; right
panels are for the period of 24–26 December 2017.
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typical strong downward plasmaspheric H+
flux with the Kharkiv flux tube being full during the night of 24

and 25 December. So we conclude that the density in the Kharkiv flux tube was reduced sometime
between ~2 UT and 5 UT of 25 December. This conclusion is supported also by the vertical TEC data
(Figure 4), which shows that sharp TEC decrease (~33% at 50°N) was registered at ~4 UT of 25 December
compared to the same time on preceding days.

One possible explanation for the Arase satellite observing the factor-of-2 lower density is that the minor
magnetic storm on the afternoon of 24 December caused the partial depletion of plasma on some flux tube
and that plasma was subsequently convected to be coincident with the Kharkiv flux tube (see, e.g., Richards
et al., 2000).

During the daytime and preevening hours of the next day (25 December), the FLIP model reproduced
the observed NmF2, topside O+ density, and Ti very well (Figure 2) indicating the correctness of
NRLMSISE Tn, O, and N2 densities. This means that the factor-of-2 decrease of the topside H+ density
and F2-layer peak density observed by the Kharkiv IS radar and ionosonde during the night of 25 and
26 December (and the related changes seen in DMSP and TEC data), but not reproduced by FLIP model
(Figure 2), may be the result of a depleted flux tube (the tube with L ≈ 2 is unable to be fully filled
during the period from the morning of 25 December to the evening of this date even under quiet
conditions). The reduced plasmaspheric density would lead to a much weaker downward H+

flux during
the night of 25 and 26 December that could not support the higher densities of the night of 24 and
25 December.

It is interesting that the time delay between the density reduction and the time of the disturbance on 24
December as seen in the various indices (Figure 4) that are usually used for such studies is the same order
of magnitude (~10 hr) as the delays estimated by Verbanac et al. (2015) for the plasmapause to respond to
enhancedmagnetic activity. It is important to note that the paper of Verbanac et al. (2015) and similar studies
examine the response of plasmapause region, which is generally at a higher latitude than Kharkiv and
expected to be much more sensitive to magnetic disturbances than the inner plasmasphere. Here we

Figure 3. Comparison of total ion density simulated with the field line interhemispheric plasma model for the Kharkiv flux
tube (L ≈ 2.13) at the altitude of the DMSP-F15 satellite and the satellite density data (blue circles) for the periods of
23–26 September 2016, 29 March 2018, 20–22 June 2017, and 24–26 December 2017. DMSP-F15 data points are plotted
with UT, which corresponds at Kharkiv to the samemagnetic local time as for the satellite pass. The absolute UT differences
between the incoherent scatter measurements at Kharkiv and corresponding DMSP observations do not exceed 1.34 hr,
and the longitudinal differences between DMSP location and Kharkiv meridian are less than 15°. DMSP = Defense
Meteorological Satellite Program.
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show that the deep inner magnetosphere (L ≈ 2.1) was strongly affected by the storm (Kp = 3+, Dst>�22 nT),
which is not even classified as a storm in accordance with commonly used classifications (Gonzalez et al.,
1994; Loewe & Prölss, 1997). Related ionospheric manifestations of such storms may be significant too.
This case study shows that other indices of storm-time activities like AE and BV (see Figure 4) are better for
the determination of the magnetic disturbances, which are effective in terms of their impact on
plasmasphere-ionosphere system.

Figure 4. Comparison of the electron density from the field line interhemispheric plasma model for the Kharkiv flux tube
(L ≈ 2.13) at the altitude of Arase satellite orbit and the satellite density data (blue symbols) for the period of 22–26
December 2017 (top panel). Arase data points are plotted at UT, which corresponds at Kharkiv to the same MLT as for
the satellite passes (23 December, MLT ≈ 8.17, 28.74°N, 29.08°E, altitude 4,927 km; 25 December, MLT ≈ 8.01, 29.12°N,
38.49°E, altitude 4,999 km). The second panel from the top shows vertical TEC at 35°E within the latitudes of 35°N to
65°N provided by UPC Global Ionospheric Maps. The solid white arrow indicates the time of sharp TEC decrease on the
morning of 25 December, while the dashed white arrows indicate the same times for the preceding days. Other panels
show variations of indices of magnetic activity (Kp, SYM-H, and AE), Bz component of interplanetary magnetic field, and BV
parameter where B is the module of interplanetary magnetic field vector and V is solar find flow velocity. MLT = magnetic
local time; TEC = total electron content.
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5. Conclusions

We investigated the state of ionosphere and plasmasphere during the periods close to the equinoxes
(September 2016 and March 2018) and solstices (June and December 2017) of the current solar minimum
24. The main results are the following.

1. Thermospheric hydrogen density was a factor of 2 higher than predictions of NRLMSISE-00 model for all
four seasons. This conclusion is supported by the observations with all used facilities. Similar result (2 to 3
times higher H density) was obtained by us for the last solar minimum 24 and for winter of solar minimum
23 (Kotov et al., 2015, 2016). This means that (a) the H density is similar for three solar minima (the same
was pointed out by Nossal et al. (2008) but for the cycles 21–23) and (b) NRLMSISE-00 thermospheric H
density is systematically underestimated by ~100% at low solar activity.

2. For the first time, using Kharkiv IS radar data, the plasmasphere electron density measured by Arase
satellite, and observational based simulation with FLIP model, we showed that actual plasmaspheric
density at L ≈ 2.1 can be reproduced with doubled NRLMSISE-00 density only.

3. A significant (by a factor of 2) decrease of plasmaspheric density was observed by the Arase satellite at the
relatively low L shell (≈2.1) at the end of the night of 25 December 2017. The likely reason was enhanced
plasma convection induced by the minor magnetic storm on the afternoon of 24 December (maximum of
Kp = 3+, minimum of Dst ≈ �22 nT). Prominent ionospheric manifestations of this partial depletion of
Kharkiv flux tube were seen during the next night of 25 and 26 December as a factor-of-2 decrease of
the topside H+ ion density and F2-layer peak density; corresponding decrease is seen also in TEC data.
To our knowledge, this is the first time that such strong effects of such a weak geomagnetic disturbance
were identified so deep into the inner magnetosphere.
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